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Multifactorial neuroprotection: Does the brain have an 
answer?
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Massive research efforts to develop effective neuroprotective therapy against stroke until now produced unsatisfactory 
results. It has been suggested that monotherapeutic approaches may not be sufficient. Investigations over the last three 
decades convincingly demonstrated the existence of powerful endogenous protective mechanisms. One of the innate 
protective mechanisms includes several brain structures, which when activated render the brain tolerant to various damaging 
stimuli. The best studied today is the cerebellar fastigial nucleus, neurons of which when activated, initiate coordinated 
multifactorial response providing long lasting neuroprotection. Numerous protective mechanisms induced by fastigial nucleus 
stimulation and other conditioning maneuvers are shared. In this review we summarize current knowledge of the neurogenic 
neuroprotection system related to the cerebellar fastigial nucleus and its commonalities with other forms of conditioning. 
Unveiling the systemic neuroprotective mechanisms will allow development of therapeutic approaches targeted toward 
activation/amplification of innate protective multifactorial mechanisms.
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Introduction
In 2013 6.5 million people globally died of stroke and almost 
25.7 million stroke survivors suffered different degrees of 
chronic disability (Feigin et al., 2015). In spite of massive 
efforts (according to PubMed just in the last 5 years, 18,956 
studies on “ischemic or hemorrhagic stroke” have been 
published), the progress in treatment of this severe condition 
remains limited (Dirnagl and Endres, 2014). There is a 
compelling need to develop new therapeutic options to improve 
treatment and recovery after stroke. As stressed by Dirnagl 
and Endes (2014), monotherapeutic approaches seem to be 
non-productive while fact-based multitargeted approaches 
may be more fruitful. During evolution, a variety of complex 
mechanisms have developed to help organism to survive 
hostile, potentially damaging conditions. Knowledge of these 
mechanisms may provide us with new therapeutic tools and 
approaches.

Preconditioning (PC) is a naturally occurring survival 
mechanism. Generally, the phenomenon of PC can be defined 
as increased tolerance of cells, organs, and organisms to the 
damaging effects of strong impacts of various nature following 
pre-exposure to sublethal doses of insulting agents (Dirnagl et 
al., 2003; Dirnagl et al., 2009; Iadecola and Anrather, 2011a). 

Recently, significant amounts of research have been devoted 
to understanding the mechanisms underlying PC due to its 
potentially wide applications: from neurological diseases and 
myocardial infarction to organ transplantation. Investigators 
unveiled various mechanisms underlying PC (see (Dirnagl et 
al., 2009; Gidday, 2015; Meller and Simon, 2015; Cheng et 
al., 2017; Jasova et al., 2017; Lee et al., 2017; Lepiesza et al., 
2017; Veighey et al., 2017; Yang et al., 2017). Pre-, peri- or 
postconditioning have become “catch-all” terms designating 
increased tolerance or decreased damage by the severe insult 
via pre-, peri- or post-ictal application of weaker or non-harmful 
action. While numerous mechanisms are involved in the 
conditioning phenomenon, there are numerous commonalities 
between its various forms. We still do not fully understand the 
interplay between various forms of conditioning. In this review 
focused mostly on neuroprotection, we provide synopsis of the 
major “subtypes” of PC from the cellular to organismal levels. 
However, special attention is devoted to so called, “neurogenic 
neuroprotection”, which we suggest may embody multifactorial 
organismal protective mechanisms, often triggered in the 
anticipation of adverse insult, coordinated by the nervous 
system and sharing numerous common features with other 
forms of conditioning.
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Innate self-defense 
Cellular self-protection. Neurons, as well as other cells, are 
able to mount limited defense against anoxic or other adverse 
conditions depending on the type and cell origin (mammals, 
reptiles, amphibians etc.) (Hochachka et al., 1996; Gidday, 
2006; Perez-Pinzon, 2007) (Fig.1). The immediate defensive 
cellular response is denoted as acute PC (Perez-Pinzon, 2007), 
indicating fast-developing often short-lasting increases in cell 
tolerance to the subsequent potentially lethal stimuli (Dirnagl et 
al., 2009; Iadecola and Anrather, 2011a; Koch et al., 2012). An 
acute defensive cellular response is referred to as an immediate 
PC as compared to the so-called delayed PC, an effect which 
can last for days and weeks often requiring changes in gene 
expression (Dirnagl et al., 2009; Iadecola and Anrather, 2011a). 
The phenomenon of PC can be observed in vitro in near 
pure neuronal cultures indicating the existence of protective 
mechanisms at the single cell level, i.e. when neurons (or other 
cells) directly affected by sublethal insult acquire the ability to 
withstand the subsequent lethal insult (Meloni et al., 2002). 

PC neuroprotection is not modality-specific and can be 
evoked by various potentially lethal insults (see Dirnagl et al., 
2003). For example, in vitro exposure to combined oxygen-
glucose deprivation (OGD) (Bruer et al., 1997; Khaspekov 
et al., 1998; Xu et al., 2002a), hypothermia (Yuan et al., 
2004), hyperthermia (Kelty et al., 2002), excitotoxic insult 
(NMDA, kainate) (Pringle et al., 1999; Tremblay et al., 2000), 
3-nitropropionic acid (Weih et al., 1999; Nakagawa et al., 2003), 
and other factors (Meloni et al., 2002) render neurons tolerant to 
the subsequent noxious stimuli of the same or different nature, 
a phenomenon known as cross-tolerance (Gidday, 2006). Acute 
cellular defense mechanisms are multifactorial (Bickler and 
Donohoe, 2002; Kirino, 2002; Dirnagl et al., 2009; Kitagawa, 
2012) and involve a number of various mechanisms such as 
modification of mitochondrial KATP channels (Heurteaux et al., 
1995; Cohen et al., 2000; McLaughlin et al., 2003), G-protein 
coupled E-prostanoid receptors (McCullough et al., 2004), 
GABA(A) receptors (Grabb et al., 2002), adenosine receptors 
(Heurteaux et al., 1995; Perez-Pinzon et al., 1996), caspases 
inactivation (McLaughlin et al., 2003), reactive oxygen species  
scavenging (McLaughlin et al., 2003), and protein synthesis 
(Gage and Stanton, 1996; Ravati et al., 2001) etc.
Inter-cellular protective mechanisms. The ability to initiate 
cellular protective mechanisms is not restricted to insult 
directed to the cell. Other cells affected by the insult can initiate 
or facilitate cellular protective cascades in their neighbors, e.g., 
neurons. In multicellular systems with different co-existing 
specialized cell types, mutually protective mechanisms seem 
to be involved. Thus lipopolysaccharide (LPS), which does 
not affect neurons directly (Bronstein et al., 1995), when 
administered in vivo induces ischemic tolerance (Bordet et 
al., 2000; Zimmermann et al., 2001). This indicates that in 
multicellular systems noxious insult does not necessarily 
have to act directly on neuronal cells to render them tolerant 
to subsequent damaging insult. Microglia activated by LPS 
promote neuronal survival (Zhou and Spittau, 2018) probably 
by converting microglia toward a prosurvival M2 phenotype 
(Ajmone-Cat et al., 2013). Neurons co-cultured with astrocytes, 
which underwent conditioning OGD, acquired tolerance to 
OGD (Narayanan and Perez-Pinzon, 2017). This effect seems 
to be mediated through glia activation and subsequent release 
of cytokines (Boche et al., 2003). Various mechanisms appear 
to be involved in the intercellular neuroprotection, such as pre-
synaptic suppression of neuronal glutamate release (Tauskela et 
al., 2012), adenosine receptors (Yun et al., 2014), chemokines 
(Shin et al., 2014), thrombin's endogenous inhibitor, protease 
nexin-1 (PN-1)(Mirante et al., 2013), HIF-1α (Jones et al., 
2013), and others (see Obrenovitch, 2008)). An important role 

seems to belong to mitochondria, which are considered to be a 
vital hub of conditioning (Pamenter, 2014; Prendes et al., 2014; 
Thompson et al., 2015; Silachev et al., 2016).

Neurons are highly susceptible to hypoxic/ischemic 
damage, while glial cells are not only more tolerant to adverse 
conditions, but are capable of providing neuronal support 
by regulating the neural environment (Xing and Lo, 2017). 
Neurons, in turn, are capable of regulating the activity of micro- 
and astroglia, preventing their inflammatory response to LPS 
(Bjorklund et al., 2010). The bidirectional protective interaction 
between neighboring cells has recently been elegantly 
formulated as the concept of “help me” signaling (Xing and Lo, 
2017; Esposito et al., 2018), which suggests generation of “help 
me” signals by the “victim” cell to induce neighboring cells to 
activate protective mechanisms. Various molecules convey “help 
me” signals: danger associated molecular patterns (DAMPS), 
such as ATP (An et al., 2014), chemokines (Conductier et al., 
2010), and others as reviewed by (Xing and Lo, 2017).
Direct and indirect PC at the organismal level. In vivo in 
1990 Kitagawa and colleagues (1990) discovered that pre-
exposure of the brain to short-term ischemia, which alone does 
not induce cell damage, significantly attenuates the subsequent 
effect of extended damage-inducing ischemia. Subsequent 
studies demonstrated that exposure of the brain to the non-lethal 
potentially damaging insults of various forms initiate a cascade 
of events rendering the brain tolerant against later application 
of damaging insult (see reviews by Kirino, 2002; Dirnagl et al., 
2003; Perez-Pinzon, 2007; Obrenovitch, 2008; Dirnagl et al., 
2009; Iadecola and Anrather, 2011a; Kitagawa, 2012; Koch et 
al., 2012; Dirnagl and Endres, 2014). This phenomenon became 

Figure 1. Different levels of innate self-defense. A. Innate self-defense 
can be triggered in a single cell by a strong but not lethal signal. In 
response to cellular changes triggered by the sublethal stimulus, 
the cell temporarily mobilizes protective mechanisms and becomes 
tolerant to the stimulus of lethal strength. B. The cell can be sensitive 
to the potentially dangerous stimulus and not only mount its own 
defense but also trigger changes in a neighbor cell making both 
cells tolerant to the subsequent lethal strength stimulus. C. In brain 
specific cells, receptors can sense changes in the environment before 
their own or their neighbor’s metabolism becomes affected and 
trigger a coordinated multicomponent response, which would make 
the brain or the whole organism protected against lethal stimulus.
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widely known as PC. Similar factors, which activate intrinsic 
cellular protection in neurons when applied to cells directly, are 
also effective when applied to the whole organism. In vivo pre-
exposure to sub-lethal global (Kitagawa et al., 1990), or focal 
(Glazier et al., 1994; Toyoda et al., 1997) ischemia, hypoxia 
(Vannucci et al., 1998; Bernaudin et al., 2002), 3-nitropropionic 
acid (Sugino et al., 1999; Weih et al., 1999), hyperthermia (Xu 
et al., 2002b), or hypothermia (Nishio et al., 2000; Yunoki et 
al., 2002) induced PC rendering the brain tolerant to subsequent 
potentially lethal insult application. 

In multicellular organisms, PC extends not only to neurons/
cells immediately affected by hurtful stimulus. Multiple 
stab wounds to the brain increase animal survival after brain 
ischemia (Takahata and Shimoji, 1986). Two-hour reversible 
unilateral occlusion of the middle cerebral artery (MCA) 
renders the contralateral hippocampal neurons tolerant to 
subsequent global ischemia (Belayev et al., 1996). Cortical 
spreading depression not involving the hippocampus induces 
ischemic tolerance in hippocampal neurons (Kawahara et al., 
1997). These observations suggest that in the whole organism 
neuroprotection can be achieved by concerted activation 
of various mechanisms to achieve neuroprotection in vivo, 
including cells not directly affected by harmful insult. These 
observations are comparable to observations in the heart, 
where short occlusions of the coronary circumflex artery 
significantly decrease the size of the myocardial infarction 
following extended occlusion of the left anterior descending 
artery (Przyklenk et al., 1993). However, PC is not only capable 
of increasing tolerance of the unaffected tissue by applying 
insult to a distant locus of the same organ, but can also protect 
other organs as well. Protection of organs and tissues by 
applying stimuli to sites remote from them is known as “remote 

preconditioning”.
Remote preconditioning. It was suggested (Kirino, 2002) 
that the PC phenomenon is part of the universal stress 
response observed across species (Feder and Hofmann, 1999). 
After demonstration that femoral artery occlusion combined 
with gastrocnemius muscle stimulation (Birnbaum et al., 
1997) is capable of decreasing myocardial infarction size, 
remote preconditioning attracted significant attention due to 
its simplicity (i.e. temporary limb ischemia) and potential 
efficacy. The presence of the remote PC phenomenon in which 
protection of remote organs is induced by making other organs 
(Gho et al., 1996; Song et al., 2007) or limbs (Wei et al., 2012b) 
ischemic, suggests the existence in complex organisms of innate 
protective mechanisms, which provide global defense against 
adverse conditions (Iadecola and Anrather, 2011a; Przyklenk 
and Whittaker, 2011). 

Remotely preconditioned ischemic tolerance can be induced 
in heart (Eisen et al., 2004), brain (Hess et al., 2015), liver (Koti 
et al., 2003), intestine (Sileri et al., 2004), kidneys  (Ogawa 
et al., 2000), skeletal muscles (Lee et al., 1996), and skin  
(Zahir et al., 1998). Due to the simplicity and relative safety 
of remote PC procedures, clinical trials are being carried out 
to explore the clinical efficacy of this method. While overall it 
seems that remote PC (applying tourniquet to legs or arms) is 
capable of exerting cardioprotective effects, the data are still 
not conclusive and further studies are required (Hong et al., 
2010; Kottenberg et al., 2014; Hausenloy et al., 2015; Heusch 
and Gersh, 2016; Basalay et al., 2018; Chong et al., 2018). 
There are fewer clinical trials exploring the efficacy of pre-
, peri or post-conditioning against brain damage compared to 
myocardial infarction (Meller and Simon, 2015; Basalay et al., 
2018). Brain remote conditioning is a simple and well-tolerated 

Figure 2. The neuroprotection circuitry might encompass neuronal circuitry involved in the coupling between neuronal activation and its 
consequent energetic demands. (1) Excitation of neurons and/or fibers projecting through the subthalamic vasodilator area (SVA) reduces 
ischemic infarctions to the same degree as excitation of the fastigial nucleus (FN) neurons. (2) Conditioned neuroprotection is independent 
of increased cerebral blood flow (CBF). The effects are long-lasting and not attributable to changes in blood gases, brain temperature, or rat 
strain. (3) The neuroprotective effects of SVA and FN stimulation are mutually independent, and FN-evoked cerebrovasodilation is mediated 
by SVA neurons. (4) Both the systemic and cerebrovascular components of FN stimulation are abolished by bilateral lesions of the rostral 
ventrolateral medulla (RVLM). (5) The SVA also mediates the primary elevation of CBF elicited by hypoxic excitation of the sympathoexcitatory 
neurons of the RVLM. (6) Intrinsic neurons of dorsal- and ventral periaqueductal grey (D- and VPAG) differentially regulate CBF. (7) Neurons of 
DPAG mediate neuroprotective effects, independently of changes in CBF and/or arterial pressure. (From (Mandel et al., 2012)).
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therapy, which has been tested with different degrees of success 
in such conditions as ischemic stroke, transient ischemic attack, 
subarachnoid hemorrhage, cerebral small vessel disease, and 
severe carotid atherosclerotic stenosis (Koch et al., 2011; Hess 
et al., 2015; Meller and Simon, 2015; Basalay et al., 2018; Zhao 
et al., 2018; Zhou et al., 2018; Zhao et al., 2019).

Remote PC can only be implemented in complex organisms, 
implying the existence of systemic protective mechanisms 
that remains to be identified. A significant body of literature is 
devoted to analysis of the possible mechanisms of myocardial 
remote PC (Heusch et al., 2015; Meller and Simon, 2015; 
Basalay et al., 2018). It seems to include humoral and neural, 
including central, mechanisms. More scarce data on the 
mechanisms of remote PC in cases of ischemic stroke show that 
comparable mechanisms seem to be involved. Reversal of the 
neuroprotective effect of conditioning ischemia by transection 
of the femoral and sciatic nerves of ischemic hindlimbs 
(Yu and Liu, 2014) by administration of ganglion blocker 
hexamethonium or by nerve block with capsaicin (Dong et al., 
2004; Ren et al., 2009; Malhotra et al., 2011; Wei et al., 2012a; 
Pignataro et al., 2013), strongly suggest the presence of a neural 
component in the mechanism of remote PC. These observations 
are supported by demonstration of the salvaging effect of 
peripheral nerve stimulation (Xiao et al., 2015). Humoral 
mechanisms also seems to be involved as indicated by reversal 
of remote PC by naloxone, an opioid receptor antagonist, by 
insulin antibodies, or by selective CGRP receptor blocker (Rehni 
et al., 2007; Zhou et al., 2011). 

Neurogenic neuroprotection.
At the level of the organism, preconditioning can be triggered 
by signal(s) activating only specific “sensory” cells while other 
cells are not affected by the changing condition. Examples of 
such sensors are oxygen sensing neurons or astrocytes localized 
to different brain areas including medulla and cerebellar 
fastigial nucleus (Guyenet et al., 2010; Angelova et al., 2015). 
The function of these cells/systems is to anticipate upcoming 
potentially dangerous changes and take protective measures 
before harmful changes occur to other cells and organs. 
In summary, available data strongly suggest the existence 
of multi-level systems of endogenous mechanisms, which 
when activated protect cells and organs against the injurious 
effects of hypoxia, ischemia, and other damaging insults. 
These levels include individual cell protection, intercellular 
protection, organ protection, and last but not least organism 
level protective mechanisms. Coordinated interaction of these 
mechanisms at all levels, from cellular to organismal, provides 
robust protection allowing organism survival under various 
hostile conditions. The advantage of the systemic organismal 
response is that various cells and organs of the organism do 
not have to be severely affected by potentially damaging 
factors. Instead, existing “sensory” or “receptor” cells can 
trigger defensive changes, before cells are directly affected. 
The oxygen sensing neurons of the medulla are examples of 
such warning mechanisms (Reis et al., 1994). These neurons 
increase their activity to trigger processes counteracting 
hypoxia before the hypoxia sets in and other neurons become 
affected by it (Sun and Reis, 1994; Neubauer and Sunderram, 
2004). Another example of a complex coordinated protective 
response is the “diving reflex”, which is triggered by trigeminal 
nerve stimulation and functions to promote survival during 
the period of anoxia (Panneton, 2013). Diving reflex includes 
coordinated activation of the sympathetic and parasympathetic 
systems (Chowdhury et al., 2015; Golanov, 2015; Chiluwal et 
al., 2017).
Endogenous neuroprotection. The existence of neurogenic 
neuroprotective mechanisms (i.e., systemic coordinated 
activation of various cellular to organismal mechanisms to 

provide neuroprotection triggered by activation of sensors) 
was suggested previously (Reis et al., 1997a; Golanov and 
Zhou, 2003; Schaller et al., 2009), and related phenomenon of 
endogenous neuroprotection have attracted significant attention 
as of late (Perez-Pinzon, 2007; Dirnagl et al., 2009; Iadecola 
and Anrather, 2011a; Kitagawa, 2012; Koch et al., 2012), 
especially in light of unsatisfactory outcome of numerous 
attempts to find therapy for stroke and other brain injuries. 

Systemic neurogenic neuroprotection (Reis et al., 1997b; 
Golanov and Zhou, 2003) seems to result from the coordinated 
activation of endogenous mechanisms at different levels. 
Excitation of neurons of selected brain structures such as the 
cerebellar fastigial nucleus  (FN) (Berger et al., 1990; Zhang 
and Iadecola, 1992a; Golanov et al., 1998; Reis et al., 1998b), 
dorsal periaqueductal grey matter (Glickstein et al., 2003), 
subthalamic vasodilator area (SVA) (Glickstein et al., 2001; 
Golanov and Zhou, 2003), rostral ventrolateral medulla (RVLM, 
S. Yamamoto, unpublished data), or the vagus nerve (Miyamoto 
et al., 2003; Mravec, 2010; Ay et al., 2011; Hiraki et al., 2012; 
Sun et al., 2012) protects brain tissue against global or focal 
ischemia. The neuroprotection triggered by brain stimulation 
was termed neurogenic neuroprotection (Reis et al., 1997a) to 
stress its neurogenic origin. Our research provided substantial 
evidence in support of the existence of intrinsic brain systems, 
which when activated offer acute and prolonged (up to three 
weeks) neuroprotection (Golanov and Zhou, 2003). Due to 
numerous commonalities shared by different types of PC we 
suggest that neurogenic neuroprotection integrates protective 
mechanisms of different levels to exert its neuroprotective 
effect and potentially participates in other forms of PC.

Phenomenology.  
Electrical stimulation of FN globally increases cerebral blood 
flow (CBF) by decreasing cerebrovascular resistance (Doba 
and Reis, 1972; Iadecola and Reis, 1990; Talman et al., 1991; 
Golanov and Reis, 1995). FN-evoked increases in CBF are 
independent of cerebral glucose utilization (CGU) (Nakai 
et al., 1983) suggesting that CBF elevation is independent 
of non-specific general functional brain activation. FN-
evoked increases in CBF represent so-called neurogenic 
cerebrovasodilation mediated by intrinsic brain circuitry 
(Iadecola et al., 1983; Golanov et al., 2001a, Golanov, 
unpublished data). These observations led to the hypothesis that 
stimulation of FN would be capable of improving CBF without 
changes in metabolism. This would result in the improvement 
of conditions in the stroke penumbral area, which is known to 
have increased metabolism when CBF is limited.

Indeed, in anesthetized rats, unilateral electrical stimulation 
of FN for one hour immediately after permanent MCA 
occlusion (MCAO) decreases contra- or ipsilateral infarction 
volume by ~40-50% as determined 24 hours after occlusion 
(Reis et al., 1989; Underwood et al., 1989; Reis et al., 1991; 
Yamamoto et al., 1993a; Golanov et al., 1996). Salvaged areas 
involve the periphery of the infarction and coincide with the 
penumbral zone surrounding the infarction core (Yamamoto et 
al., 1993a; Golanov et al., 1996). The effect of FN stimulation 
is strain independent and comparable in SHR, Wistar, Fisher, 
and Sprague-Dawley rats (Reis et al., 1989; Reis et al., 1991; 
Zhang and Iadecola, 1992b; Yamamoto et al., 1993a; Zhang and 
Iadecola, 1993; Golanov et al., 1996; Glickstein et al., 2001; 
Zhou et al., 2003)

In MCA occluded animals FN stimulation increases CBF 
in the non-ischemic areas of the ipsilateral hemisphere and in 
the whole contralateral hemisphere. However FN stimulation 
does not increase CBF in the underperfused penumbral zone 
– salvaged area - (Yamamoto et al., 1993a; Golanov et al., 
1996) suggesting that mechanisms distinct from CBF elevation 
underlie salvaging of the penumbra, such as suppression of 
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metabolism. However, further analysis revealed that salvaging 
of the penumbra by FN stimulation is not dependent on 
metabolism suppression (Golanov et al., 1996). In other 
words, the salvaging effect of FN stimulation is mediated by 
mechanisms other than CBF and CGU modifications.

Further exploration revealed that FN stimulation efficiently 
diminishes the volume of the lesion triggered by direct 
application of the excitotoxin – ibotenic acid (Schwarcz et 
al., 1979) – into striatum (Glickstein et al., 1999a). Delayed 
hippocampal neuronal death observed after >12 hours after 
the episode of global ischemia involves mostly apoptotic 
mechanisms (Macmanus et al., 1993; Honkaniemi et al., 1996; 
Petito et al., 1997; Ozawa et al., 1999; Back et al., 2004). FN 
stimulation preceding global ischemia decreases the number 
of damaged CA1 area neurons in hippocampus by ~60%, 
demonstrating that FN stimulation also effectively exerts 
neuroprotection against delayed neuronal death (Golanov et al., 
1998).

The salvaging effect of FN stimulation requires at least 45 
minutes of stimulation. Stimulation was shown to be effective 
if delivered immediately before (Yamamoto et al., 1993b; 
Glickstein et al., 1996) or after (He et al., 2014; Wang et al., 
2019) the MCAO. The salvaging effect of electrical stimulation 
of the FN develops immediately after the stimulation. However, 
its maximum level of infarct volume attenuation of 50%  occurs 
72 hours after the stimulation and dissipates by 10 days (Reis et 
al., 1998a). 

These findings raise the possibility that the FN may be a 
component of the system’s mechanisms that participates in the 
systemic defense reaction. This assumption is supported by 
the observation that transient global ischemic preconditioning-
induced salvage of CA1 hippocampal neurons is completely 
reversed by preceding excitotoxic lesion of FN neurons. 
Moreover, sublethal preconditioning induced by transient global 
ischemia alone becomes lethal for CA1 neurons in animals 
with lesioned FN neurons, and drastically decreases the ability 
of animals to survive global sublethal ischemia (Rollins et al., 
2003; Golanov et al., 2017). These observations are in-line with 
the earlier observations of a critical role of the FN in surviving 
hemorrhage (Lutherer et al., 1983) or myocardial infarction 
(Abulaiti et al., 2011). These findings strongly suggest that the 
FN plays a physiological role in the mechanisms of ischemic 
preconditioning.

FN-evoked neuroprotection is initiated by the excitation of 
neurons of the rostral-ventromedial part of the FN. Selective 
excitotoxic lesion (ibotenic acid) of these neurons reverses the 
neuroprotective effect of FN stimulation on infarct volume 
triggered by MCAO three days after the stimulation, while FN-
evoked increases of CBF and arterial pressure are preserved 
(Glickstein et al., 1999b). These data allow the conclusion that 
excitation of FN neurons rather than fibers of passage produce 
neuroprotection, and that CBF increase and neuroprotection are 
independent and mediated by different circuitry.

Neuroprotective properties of FN are not unique suggesting 
that intrinsic neuroprotective circuitry within the brain may 
include multiple components. The SVA is the relay station 
for vasodilator signals generated in the medulla (RVLM) as 
well as in the FN (Golanov and Reis, 1998; Golanov et al., 
2001b). Electrical stimulation of the SVA induces comparable 
metabolism-independent neuroprotection. Neuroprotective 
effects of stimulation of the SVA or the FN are independent: 
excitotoxic lesions of SVA or FN, respectively, do not affect 
salvaging effects of FN or SVA stimulation (Glickstein et 
al., 2001). Another known neuroprotective site is dorsal 
periaqueductal grey (PAG). One-hour electrical stimulation of 
dorsal PAG exerts robust neuroprotective effects (Glickstein et 
al., 2003).

Mechanisms.  
Several possible mechanisms of neurogenic neuroprotection 
have been explored. Selective excitation of FN neurons by 
microinjection of excitatory amino acids decreases global 
CGU (Chida et al., 1989), which is indicative of suppression 
of functional activity (Sokoloff et al., 1977). In support of 
decreased functional activity is the appearance of synchronized 
slow high-amplitude EEG activity under electrical stimulation 
of the FN (Iadecola et al., 1986; Golanov et al., 2000). In line 
with the suggestion that excitation of FN neurons decreases 
functional activity are observations that stimulation of FN 
elevates seizure thresholds in experimental animals (Hablitz and 
Rea, 1976; Wang et al., 2008), reduces seizure susceptibility in 
man (Levy and Auchterlonie, 1979), and increases the threshold 
of spreading depression (Golanov and Reis, 1997). 

Decrease in neuronal excitability evoked by FN stimulation 
counteracts peri-infarct depolarizing waves (PIDs). PIDs 
initiated by membrane depolarization resulting from stroke 
(Petzold et al., 2005; Hartings et al., 2009; Dreier, 2011; 
Lauritzen and Strong, 2017) aggravate ischemia-induced deep 
ionic disbalance (Giza and Hovda, 2001), and exacerbate energy 
depletion (Hartings et al., 2008) while CBF is compromised. In 
our experiments, stimulation of the FN increases latency and 
reduces the number of PIDs appearing after MCAO (Golanov 
and Reis, 1999a, b), which may have protective effects 
following brain ischemia.

Opening of potassium channels is known to decrease 
neuronal excitability (e.g. Lutz et al., 1996). Decreased neuronal 
excitability following FN neuroprotective stimulation is in line 
with possible opening of potassium channels. An increase of 
interstitial potassium levels during FN stimulation (Iadecola and 
Kraig, 1991) and reversal of the neuroprotective effect of FN 
stimulation by intracerebroventricular preferential KATP-channel 
blocker glibenclamide (Golanov et al., 1999; Golanov and 
Reis, 1999c), support the suggestion that opening of potassium 
channels may play a role in the neuroprotective effect of FN 
stimulation. This observation points to a commonality in 
cellular mechanisms between the FN evoked neuroprotection 
and neuroprotection evoked by ischemic or chemical 
preconditioning, which is also dependent upon KATP-channel 
opening (Heurteaux et al., 1993; Nakagawa et al., 2002).

A substantial number of neurons after global (Macmanus 
et al., 1993; Honkaniemi and Sharp, 1996; Petito et al., 1997; 
Ozawa et al., 1999) or focal ischemia (Li et al., 1997; Velier 
et al., 1999) undergo apoptosis, where the mitochondria play 
a crucial role (Haeberlein, 2004). Inhibition of apoptosis is 
neuroprotective (e.g. Robertson et al., 2000; Wiessner et al., 
2000). Staurosporine is known to induce cell death through an 
apoptosis-like mechanism: mitochondrial release of cytochrome 
c with subsequent activation of caspases-9 and -3 (Koh et 
al., 1995; Krohn et al., 1998; Velier et al., 1999; Strasser et 
al., 2000). In “ex vivo” brain slices obtained 72 hours after 
FN stimulation, we observed suppression of the release of 
cytochrome c by mitochondria induced by staurosporine, 
calcium overload, or by mastoparan, in addition to suppression 
of caspase-3 activity (Zhou et al., 2001). In these slices 
staurosporine-induced insertion of the pro-apoptotic protein 
Bax into mitochondria was significantly reduced. Following 
FN stimulation mitochondria exerted an increased capability 
of calcium sequestration and tolerance to depolarization. These 
results indicate that FN stimulation protects the mitochondria 
from calcium overload, and suppresses mitochondrial apoptotic 
pathways, suggesting a significant role of mitochondria in 
neuroprotection exerted by FN stimulation. The effect of the 
suppression of cytochrome c release is comparable to that 
observed in cultured cells in response to calcium-evoked release 
of cytochrome c by OGD preconditioned neurons (Zhou et al., 
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2001; Zhan et al., 2002; Zhou et al., 2005) 
Mitochondria in brain slices obtained 72 hours after FN 

stimulation exert significant resistance to the depolarizing 
effect of the mitochondrial uncoupler, carbonyl cyanide-
phenylhydrazone, indicating that FN stimulation stabilizes 
the mitochondrial membrane potential (Yamamoto and 
Golanov, 2004a). Increased mitochondrial tolerance against 
depolarization may be a component of the endogenous 
neuroprotective mechanism mediated by upregulation of 
uncoupling protein 4 (UCP4) in response to opening of 
potassium channels (Yamamoto and Golanov, 2004a, b; 
Yamamoto et al., 2011). Seventy-two hours after one-hour 
FN stimulation, protein and mRNA levels of UCP4 increased 
throughout the cortex. Following MCAO, mRNA and protein 
levels of UCP4 increased even more. These findings suggest 
that FN-evoked neuroprotection might involve modification 
of UCP4 expression, which can exert neuroprotective effects 
by rendering mitochondria more tolerant to ischemic insult 
(Shant et al., 2005b). Uncoupling proteins decrease production 
of reactive oxygen species (ROS) and can be protective against 
ischemic stroke (Mattiasson et al., 2003).  In our experiments 
we observed participation of potassium channels in the early 
phase of FN stimulation. Opening of potassium channels, 
especially mitoK increases production of ROS and exerts 
neuroprotective effects  (Shimizu et al., 2002; Andrukhiv et 
al., 2006). We hypothesized that this increase in ROS may 
trigger increased expression of UCP4. In cultured neurons, an 
observed increase in UCP4 expression in response to diazoxide 
exposure was reversed by superoxide dismutase (Golanov and 
Yamamoto, 2004; Shant et al., 2005a). These observations 
may explain the different action of the potassium channels 
blocker, glibenclamide, which effectively reversed FN-induced 
neuroprotection when injected at the time of stimulation, 
but was not effective in reversing the protective effect when 
applied 72 hours after stimulation, at the time of MCAO. This 
observation suggests that opening of potassium channels is 
necessary at the initial phase of FN-induced protection, thereby 
providing an acute phase of protection, and triggers long-
term changes such as gene-expression that exert long term 
neuroprotection by increasing ROS levels. 

Prohibitin is another mitochondrial protein whose expression 
increases 72 hours after FN stimulation.   Prohibitin is also 
upregulated in neuronal cultures or hippocampal slices in 
response to hypoxia, and silencing of its expression increases 
neuronal loss. It seems that its effects are also associated 
with mitochondrial membrane potential and ROS production. 
It was suggested that prohibitin may stabilize the function 
of mitochondrial complex I (Zhou et al., 2012). These data 
are in line with the suggestion that FN stimulation-induced 
neuroprotection also involves mitochondria in conditioning 
processes (Pamenter, 2014; Prendes et al., 2014; Thompson et 
al., 2015; Silachev et al., 2016).

Excitotoxicity, which is accompanied by cellular calcium 
overload, is an important component of ischemic/hypoxic 
neuronal damage (Mergenthaler et al., 2004). Excessive calcium 
overload activates protein kinases, such as PKCγ and δ, and 
proteases, such as calpain, which are known to exert deleterious 
effects on neurons under conditions of brain ischemia/hypoxia 
(Yamashima, 2004; Chou and Messing, 2005; Zhao et al., 
2016). FN stimulation at 1 to 7 days before the stroke decreased 
expression of these protein kinases (Yu et al., 2004) and 
inhibited calpain activity (Deng and Dong, 2003), decreasing 
stroke volume and improving recovery.

Peroxisome proliferator-activated receptor gamma (PPARγ) 
is known as a master regulator of numerous genes involved in 
neuroinflammation, energy metabolism, and redox equilibrium 
(Cai et al., 2018) and is neuroprotective when activated 
(Luo et al., 2006; Cai et al., 2018). FN stimulation increases 

expression of PPARγ, and reduces infarct volume, (He et al., 
2014; Tang et al., 2015; Liu et al., 2017) while suppression 
of PPARγ expression using small hairpin RNA reverses the 
neuroprotective effect of FN stimulation (Liu et al., 2017).

Available data also indicate the possible participation of 
microRNA in the salvaging effects of FN stimulation. One-
hour FN stimulation decreased expression of microRNA miR-
29c in parallel with the decrease in infarct volume in a standard 
ischemia/reperfusion model. A control antagomir was not 
effective in reducing infarct volume. This microRNA directly 
binds to the predicted 3'-UTR target sites of Birc2 and Bak1 
genes, suppressing their expression. Over-expression of miR-
29c effectively reduced Birc2 (also Bak1) mRNA and protein 
levels, increased infarct volume and apoptosis, and worsened 
neurological outcomes (Huang et al., 2015). Further exploration 
of the possible involvement of microRNA in the salvaging 
effect of FN stimulation revealed over 9 microRNA whose 
expression increased following FN stimulation, and that may be 
involved in the salvaging effect. However, their specific targets 
remain to be established (Feng et al., 2015). One new specific 
microRNA, rno-miR-676-1, has been identified as participating 
in the salvaging effect of FN. However, it’s specific target has 
not been established (Pang et al., 2015).
Regeneration. Besides improving survival of brain cells, 
FN stimulation seems to be capable of stimulating axonal 
regeneration. FN stimulation 1 hour after MCAO led to 
upregulation of growth associated protein 43 (GAP43), which 
was accompanied by improvement of neurological recovery. 
The effect seems to be mediated by the protein kinase A (PKA) 
pathway, as an antagonist of PKA reversed the positive effect of 
FN stimulation (Wang et al., 2019). 

A series of correlative studies also suggests that FN 
stimulation may improve axon growth. Thus growth arrest 
and DNA damage inducible gene β (Gadd45β), which may 
participate in axon growth (Liu et al., 2015), increased 
significantly in rats after FN stimulation demonstrating 
improvement in motor behavior (Liu et al., 2012). At the same 
time FN stimulation decreased expression of repulsive guidance 
molecule A (RGMa), which was accompanied by increased 
optical density of neurofilaments, indicating improved axon 
recovery (Jiang et al., 2012). Comparably, FN stimulation 
2 hours after the ischemia decreased expression of Nogo 
receptor mRNA and protein, which are known to suppress axon 
regeneration (Zhang et al., 2008).

Electric stimulation of FN also exerts positive effects on 
neuronal stem cell proliferation and survival. It promotes the 
proliferation of bromodeoxyuridine (Brdu) positive cells after 
stroke (Huang and Luo, 2008) and improves survival and 
differentiation of neuronal stem cell transplanted into rats with 
MCAO (Jin et al., 2007; Huang et al., 2010).

In f lammat ion / Immune  re sponse  (d i encepha lon /
hypothalamus). Modulation of the immune/inflammatory 
response plays an important role in poststroke induced 
pathology (Helmy et al., 2011; Iadecola and Anrather, 2011b), 
and development of ischemic tolerance (Garcia-Bonilla et al., 
2014). FN-evoked neuroprotection also seems to suppress 
the inflammatory response, which plays an important role in 
the protective effects. Expression of inducible nitric oxide 
synthase (iNOS) by cerebral microvessels and leukocytes is 
one of the components of the inflammatory reaction to ischemia 
(Iadecola et al., 1995a; Iadecola et al., 1995b; Nagafuji et 
al., 1995; Iadecola et al., 1996; Cobbs et al., 1997; Galea et 
al., 1998c; Cernak et al., 2001), which while important for 
reparative processes after brain damage, can also exacerbate it 
(see (Barone and Parsons, 2000; Iadecola and Alexander, 2001; 
Morganti-Kossmann et al., 2002)). FN stimulation 48 h prior 
to MCAO reduces induction of iNOS mRNA and expression 
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of active iNOS in brain microvessels, and the infiltration of 
macrophages into the territory which is salvaged (Galea et al., 
1998a). Moreover, stimulation of FN suppresses induction of 
intercellular adhesion molecule-1 and iNOS by interleukin-
1β, a leading mediator of the inflammatory response (Liu et al., 
1993; Barone and Parsons, 2000; Iadecola and Alexander, 2001; 
Morganti-Kossmann et al., 2002) in vivo in striatum and in vitro 
by cerebral microvessels obtained from rats 72 hours after FN 
stimulation (Galea et al., 1998b). These findings suggest that 
FN stimulation renders cerebral microvessels less sensitive 
to inflammatory stimuli and can be interpreted as evidence 
that suppression of the inflammatory reaction is one of the 
mechanisms of neurogenic neuroprotection.

Cerebellar FN has multiple connections with various 
hypothalamic nuclei (Del Bo and Rosina, 1986; Min et al., 
1989; Haines et al., 1990; Çavdar et al., 2001; Soto-Tinoco et 
al., 2016; Li et al., 2017), including areas involved in immune 
control (Soto-Tinoco et al., 2016).  Excitotoxic lesion of 
FN neurons resulted in increased mesenteric T lymphocyte 
proliferation and splenic NK cell cytotoxicity (Peng et al., 
2005), which reflect deactivation of glutamatergic projections 
from the FN to the hypothalamus. Inhibition of glutamate 
synthesis in the FN decreased glutamate levels in the lateral 
hypothalamus and attenuated the percentage and cytotoxicity 
of natural killer cells, as a well as lowered the percentage of 
cytokine production by T lymphocytes (Cao et al., 2012; Cao et 
al., 2015). γ-Aminobutyric acid (GABA)-ergic projection from 
the FN to the hypothalamus exerted opposite effects: vigabatrin, 
an inhibitor of GABA-transaminase, significantly reduced 
concanavalin A (Con A)-induced lymphocyte proliferation, anti-
sheep red blood cell (SRBC) IgM antibody levels, and splenic 
natural killer (NK) cell number and cytotoxicity (Cao et al., 
2013).

Another intriguing regulatory function of the FN nucleus in 
the immune system is its potential regulation of the intestinal 
mucosa, and as a consequence, regulation of microbiome/host 
interaction. Lately it has become clear that the microbiome 
plays an important role in neurological disorders (see (Winek 
et al., 2016)). While currently no data is available on the effect 
of FN stimulation on the gut microbiome or gut wall alterations 
affecting the microbiome/organism interaction, there are 
potential consequences of FN stimulation on the organism/
microbiome interaction. The effect of FN on gastrointestinal 
motility is known (Manchanda et al., 1972). Activation of FN 
GABAergic cells aggravated stress-induced gastric mucosa 
damage (Zhu et al., 2013).  The effect seems to be mediated 
through the lateral hypothalamus and greater splanchnic nerve 
(Zhu et al., 2012), which plays and important role in the control 
of inflammation and the intestine (Martelli et al., 2014). It 
is conceivable that activation of the FN may also regulate 
organism/microbiota relations and affect the microbiome 
itself.

Conclusion
Cerebellar FN stimulation delivered before or after a brain-
damaging event is capable of significantly attenuating the 
damage. Numerous molecular and systemic mechanisms are 
involved in the neurogenic neuroprotection induced by FN. 
Available data indicate that the FN is a part of an endogenous 
protective system and provides warning signaling for activation 
of neuroprotective mechanisms (Parsons et al., 2001;Nayak 
et al., 2016). Moreover, the FN is critical for survival during 
life threatening conditions (Lutherer et al., 1982; Lutherer et 
al., 1983; Golanov et al., 2017).  Available data provide strong 
substantiation for the existence of an intrinsic neuroprotective 
system, which offers lasting neuroprotection when activated. An 
intrinsic protective system, which includes at least FN, SVA, 
and PAG, probably is activated by adverse conditions, such as 

ischemia, hypoxia, or traumatic brain injury, thereby protecting 
the brain (Fig. 2). We hypothesize that it is activated reflexively 
under normal physiological conditions in anticipation of the 
development of adverse situations, for instance as part of the 
coordinated diving response. “To tolerate and survive hypoxia, 
the mammalian nervous system must (a) reduce metabolism, 
(b) prevent cell death and injury, and (c) maintain functional 
integrity” (Ramirez et al., 2007). Data provided are in accord 
with these requirements and allow us to hypothesize that 
activation of the intrinsic neuroprotective system through 
activation of the naturally occurring response, mobilizes 
systemic (activity and metabolism suppression, suppression 
of inflammatory response) and innate cellular (changes of 
membrane properties of neurons and mitochondria, suppression 
of apoptosis) protective mechanisms. Endogenous neurogenic 
neuroprotection is mediated by a coordinated integrative 
response, which involves protective mechanisms at all levels, 
from cellular to organismal as we described. It is conceivable 
that the innate brain protective system, which includes the 
FN, may also play a role in other types of conditioning. 
Understanding the systemic protective mechanisms, their 
triggers, effectors, components, and their coordination will 
allow us to control and amplify naturally existing protective 
mechanisms.
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